Different mechanisms underlying the stimulation of K(Ca) channels by nitric oxide and carbon monoxide.

نویسندگان

  • Lingyun Wu
  • Kun Cao
  • Yanjie Lu
  • Rui Wang
چکیده

The molecular mechanisms underlying the effects of nitric oxide (NO) and carbon monoxide (CO), individually and collectively, on large-conductance calcium-activated K(+) (K(Ca)) channels were investigated in rat vascular smooth muscle cells (SMCs). Both NO and CO increased the activity of native K(Ca) channels. Dehydrosoyasaponin-I, a specific agonist for beta subunit of K(Ca) channels, increased the open probability of native K(Ca) channels only when it was delivered to the cytoplasmic surface of membrane. CO, but not NO, further increased the activity of native K(Ca) channels that had been maximally stimulated by dehydrosoyasaponin-I. After treatment of SMCs with anti-K(Ca),beta subunit antisense oligodeoxynucleotides, the stimulatory effect of NO, but not of CO, on K(Ca) channels was nullified. CO, but not NO, enhanced the K(Ca) current densities of heterologously expressed cloned K(Ca),alpha subunit, showing that the presence of K(Ca),beta subunit is not a necessity for the effect of CO but essential for that of NO. Finally, pretreatment of SMCs with NO abolished the effects of subsequently applied CO or diethyl pyrocarbonate on K(Ca) channels. In summary, the stimulatory effects of CO and NO on K(Ca) channels rely on the specific interactions of these gases with K(Ca),alpha and K(Ca),beta subunits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of colonic ion transport by gasotransmitters.

Gaseous molecules such as nitric oxide (NO), hydrogen sulfide (H₂S), or carbon monoxide (CO) are involved in the regulation of colonic water and salt transport, which can be switched between absorption and secretion. Nitric oxide is produced from the amino acid L-arginine by different isoforms of the enzyme NO synthase, which are expressed both by enteric neurones and by the colonic epithelium....

متن کامل

Role of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit

Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...

متن کامل

A novel role for carbon monoxide as a potent regulator of intracellular Ca and nitric oxide in rat pancreatic acinar cells

Moustafa A, Habara Y. A novel role for carbon monoxide as a potent regulator of intracellular Ca and nitric oxide in rat pancreatic acinar cells. Am J Physiol Cell Physiol 307: C1039–C1049, 2014. First published September 24, 2014; doi:10.1152/ajpcell.00252.2014.—Carbon monoxide (CO) is known as an essential gaseous messenger that regulates a wide array of physiological and pathological process...

متن کامل

Exploring the role and inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning induced cardioprotection in rats

Objective(s): This study explored the inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning (RIPC) conferred cardioprotection. Materials and Methods: Blood pressure cuff was placed around the hind limb of the animal and RIPC was performed by 4 cycles of infla...

متن کامل

A novel role for carbon monoxide as a potent regulator of intracellular Ca2+ and nitric oxide in rat pancreatic acinar cells.

Carbon monoxide (CO) is known as an essential gaseous messenger that regulates a wide array of physiological and pathological processes, similar to nitric oxide (NO) and hydrogen sulfide. The aim of the present study was to elucidate the potential role of CO in Ca(2+) homeostasis and to explore the underlying mechanisms in pancreatic acinar cells. The exogenous application of a CO-releasing mol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 110 5  شماره 

صفحات  -

تاریخ انتشار 2002